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Brazilian tests were carried out to determine size-tensile strength
dependence in dasite, Valders limestone, and St.” Cloud gray granodiorite.
It was concluded that there is a size effect on tensile strength; in Brazilian
test, this effect is governed mainly hy the position.and orientation of the
internal flaws relative to the loaded diametral plane.

A two-dimensional computer program simulating the Rrazilian test was
written, The program employs four-sided, isoparametric elements and is
based on the same failure criteria used in the first annual progress report.
The present program, however, is more efficient and contains several
features not found in the first progrem. Test runs have proven that the
program can predict accurately the progression of failure in Brazillan'
test and, to a lesser extent, the correlation of load and displacement.

A program employins;, both two-dimensional and three-dimensional
elements is proposed. The program will be based on. more realistic
failure criteria and' will take into account rock anisotropy. ;
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PREFACE

This report covers the first six months accomplisbments in the

research program entitled; "Mechanical Behavior of Rock Under
Static Loading, " R, W. Heins, Co-Principal investigator. The

i t A of the project entitled, "Agpects of Mechanical
Static and Cyclic Loading" (Contract No.
ject i published in a separaic volume.



SUMMARY

ASPECTS OF MECHANICAL BEHAVIOR OF ROCK UNDER STATIC LOADING

PART A

Summary of Work to Late

Brazilian tests were carried out on three rocks (dacite, Valders
limestone, and St. Cloud gray granodiorite) to determine size-tensile
strength dependence. Plots of tensile strength versus specimen
dimension (length or diamete) are shown in Chapter 1. It was concluded
that there is a sizec effect on tensile strongth; in Brazilian test, this
effect i3 governed mainly by the position and orientation of the internal
flaws relative to the 1oaded diametral plane rather than by the extent
and number of the flaws.

A two-dimensional computer program simulating the Brazilian test
has been ccmpleted. The program employs four-sided, isoparametric
elements and is based on the same failure criteria described in the first
annual progress report. The present p-ogram, however, is more
efficient and contains several features not found in the first program.,
Test runs have proven that the program can predict accurately the
progression of failure in Brazilian test and, to a lesser extent, the
correlation of load and displacement.

Development of a program employing both two- dimensional and
three-dimensional elements has started. The program will be based on
more realistic failure criterion and will take into account rock anisctropy.
Most of the writing of the program has been done and debugging of the

program is in progress.

ii



Future Work

Development of the combined two-

or thre¢-dimens:onal program
will continue,

Several examples will be run to check the correctness
ol the prograr,

iii
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CHAPTER 1

SIZE EFFECT ON BRAZILIAN TEST

1.1 Introduction

When applying values of mechanical Properties of rocks obtained
from laboratory tests to actual problems, it ig essential for reasons of
safety and economy that size effect, if any, be established, A design, for
example, that does not take into account size effect could be unsafe if,
in fact, size effect exists, On the other hand, a design based on the exist-
ence of size effect could be overly conservative if no such effect exists,

Although considerable experimental work has been undertaken to
determine size effect in rocks, the findings have so far been inconclusive
and often contradictory. In tests to study size-strength dependence, it has
been observed (2) that, with increasing size, strength either (a) decreases,
(b) remains unchanged, or (c) increases, A very logical explanation of
these widely divergent size effects was offered by Koifman (3). He hypo-
thesized that size effect is governed by two factors, namely: natural
internal imperfections which he called "volume" factor and "changes in the
surface layers, brought about by mechanical, physical or chemical action,
or by influences of the environment" which he called "surface" factor,
Koifman claimed that with increased size, strength will decrease when the
"volume" factor ig dominant, could increase if the "surface" factor is
dominant, or will remain the same if the two factors balance each other,

He went on to say that under tensile stresses the "volume" factor will always
Prevail and hence, the strength of the rock will always decrease with in-
creasing size., He based hig argument on the assumption that the number
and extent of the internal flaws increases with size. Although this

assumption has a statistical basis, it might not be valid in actual situations,
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Indeed, in rock masses where nonhomogeneity occurs more often that not
a sample taken from a relatively defect-free region could easily contain
much fewer structural defects than smaller samples taken from other
regions not quite as defect-free, This is particularly true for small-size
samples such as those used in laboratory tests. Furthermore, in Brazilian
teets the tensile strength could be much more sensitive to the position
and orientation of the structural defects relative to the loading axis than
the number an< extent of these defects, Thus, in Brazilian tests at least,
the possibility of strength increasing with size should not be ruled out,
Several investigators (2, 3) have reported such a size-strength variation,

In the present study, an attempt will te made to correlate speci-
men size and tensile strength as obtained from Brazilian test, Three types of
rocks were tested. These are Valders limestone, St. Cloud gray grano-

diorite, and dacite,

1,2 Experimental Procedure and Results

The tests were carried out on a MB Universal Testing Machine
(Fig. 1.1) according to the procedure described in the first annual progress
report (1), The specimens were 1", 2" and 3" in diameter and 1/2", 1" and
2" in length (or thickness), with all nine possible combinations of length
and diameter represented, The specimens were tested in random order and
without due regard as to which diametral axis would be loaded. At least
three samples of each size were tested. A typical Brazilian test set-up
is shown in Fig. 1.2,

Two modes of testing, namely, stress-controlled mode and strain-
controlled mode, were used. In the stress-controlled mode, the load is
applied at a predetermined constant rate of approximately 100 pounds per
second. In the strain-controlled mode, the load is applied at a varying
rate depending on the lateral strain at the center of the specimen, In the
latter mode the load can be reduced faster than the specimen breaks thus

avoiding the catastrophic failure which characterizes stress-controlled tests,



IFigure 1.1
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It is thus possible to obtain complete stress-strain curves in strain-
controlled tests,

To make the two loading modes equivalent during the early stage
of loading, the strain-controlled mode was programmed to provide a maxi-
mum strain of 10, 000 micro-inch per inch in 800 seconds. This rate, it
was estimated, is approximately ecual to the 100 lbs, /sec. rate used in
the stress-controlled mode.

Plots of tensile strength (ot) versus specimen dimensions for all
rocks are shown in Figs, 1.3 through 1,14, The curves were plotted on the

basis of the equation,

in which L is length; D is diameter; and 01, 92, and 93 are constant para-
meters, ‘The values of the constant parameters corresponding to the
condition of "best fit" can be obtained by means of a statistical procedure

called regression analysis (5),

1,3 Discussion of Results

All kinds of strength~size variation are shown in the plots, In the
harder rocks (St, Cloud gray granodiorite and Valders limestone in some
cases) there appears to be a definite correlation between size and strength,
Some agree with Koifman's prediction. The apparent absence of definite
pattern of the size-strength relationship in the other plots could be attributed
to one or a combination of the following:

(a) The size differeres between the specimens were not large
enough,

(b) Not enough samples were tested for certain sizes parti-
cularly in strain-controlled tests,

(c) Valders limestone and dacite are not nearly homogenous
and isotropic as first thought. The tensile strengthwasg
therefore, affected more by the position and orientation
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of the internal structural defects with respect to the
loaded diametral plane than by the number and extent
of said defects. This also explaine the scattering of
the data points,

1.4 <Conclusions

There is definitely a size effect on tensile strength, In
Brazilian tests, the size effect will be governed mainly by the position
and orientation of the internal defects relative to the loaded diametral
plane rather than by the extent and number of the defects. For this reason,
the Brazilian test is not a good basis for studying size-tensile strength
dependence unless care is taken to consistently load the specimens long
the same diametral plane. The splitting test described by Koifman (8)
appears to be a better alternative,

The size difference between the specimens used in this study
was not large enough to predict a definite pattern of size-strength relation-
ship especially in the case of the soft rocks. Future tests should include

larger specimens,
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CHAPTER 2

FINITE ELEMCENT SIMULATION OF BRAZILIAN TEST

2.1 Introduction

A theoretical version of the Brazilian test employing the finite elemem
technique is described in this chapter. In connection with the proposed
method, development of a highly efficient computer program which will be
based on both three-dimensional and two-dimensional elements and which
will account for material anisotropy as well as nonhomogeneity is now under-
way. A two-dimensional program which takes into account nonhomogeneity
but not anisotropy has already been developed and will be described in the
next chapter.

In the treatment of nonhomogeneous problems, the basic idea suggested
in the first annual report will be used; thst is, elastic properties will be
assigned randomly to each element by means of a random number generating
routine. Other failure criteria not touched in the first annual report will be
investigated. It has been experimentally demonstrated (1) that although
rock is essentially a brittle material, it attains an unusually high degree of
ductility when subjected to high confining pressures. This phenomenon,
however, is vaguely defined in literature and will, therefore, be taken into
account only approximately when considering post-failure behavior of elements.

In writing this report, it is assumed that the reader is familiar with
the basic principles of matrix algebra and the finite element method. No
attempt will be made to rederive equations which have already been derived

in previous publications.

2.2 Formulation of Essential Matrices for Three-Dimensional Elements

In the finite element method of analysis, the whole structural system
is idealized as an assemblage of elements which are connected to one another

only at a discrete number of nodal points. The nodal displacements are the



(a) Homogeneous and isotropic

(c) Homogeneous and anisotropic

FIGURE 2.1 Material Properties Considered in Analysis
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basic unknown quantities of the method upon which the displacement pattern
and therefore the stresses within the boundaries of the element depend. To
facititate the calculation of the element stiffness properties, a set of dis-
placement functions, usually polynomials, are assumed. These functions
uniquely define the deformations allowed within an element in terms of the
nodal displacements.

In this study, the Brazilian test specimen is divided by imaginary
annular surfaces and radial planes into elements of the kind shown in Fig. 2. 2.
The corner points of the elements are designated as the nodal points. Eight-
term linear polynomials are used to represent the radial (u), circumferential

(v), and axial (w) displacements within an element. Thus

u 1 r' @ r'e z' r'z' @'z r'e'z 0 0 0 0
v=1]0 0 0 0 0 0 0 0 1 r' e r'e
0 0 0 0 0 0 0 0 0 0 0 0

ral 5 (2.1)
0 0 0 0 000 0 0 0 o0 o 22
2'r'2'@'z2'r8'270 00 0 0 0 O 0 < .3 p
0 0 o 0 1 r @ re z' rz'ez r'@g'z ;24
. 4%
where a Pr8greencns »8,, are the constant coefficients of the polynomials

and (r', @', 2') are local dimensionless cylindrical coordinates which range in
value from -1 to +1 within an element. The global cylindrical coordinates

(r, 8, z) are related to the local coordinates as follows:

r=r +rr
(o) S

0 = 0 +00¢ (2. 2)
(o) ]

2 =2 42z 2
o (]

wkora (ro, eo. zo) are the global coordinates of the origin of the local coordin-
ate axes and 2rs. 293 and Zzs are the side dimensions of :he element (see
Fig. 2. 3).
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(a) Two--dimersional element

(b) Three-dimensional slement

FIGURE 2. 2 Element Models With Local Node Numbers Indicated




FIGURE 2. 3 Relationship Between Global and Local Coordinates
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To obtain the displacements at any node i, one merely substitutes

into eq. (2. 1) the appropriate nodal coordinates, that is,

{ z a1+a2r1+a301+a4r10 +......

| = a9+amri+anei+a12ri9'+...... (2. 3)

=
1

<
'

F ] [} [} [}
w1 = a17+a18r1+a1901+a20r10 +......

*
where ri, Oi. z' are equal to +1 or -1. Thus, if {x} denotes the nodal dis-

i
placement vector {u1 V] Wy U, Vy ... Vg w8] and {a} the constant co-
efficient array, then
(x}) = [c] (a} (2. 4)
The matrix [c] is shown in Table 2. 1. It can easily be verified that
[a”! - %[c]T (. 5)
From the equations for the components of strain at a point,
r )  du A
€ or
u v
‘o r ¥ o
()ed e, b - L (2. 6)
z oz :
du Qv _ v
"re roé or r
| qu , aw
Yrz oz or
v . dw
L Yoz J Laz * e J
one obtains, with the aid of eqs. (2. 1) and (2. 2), the relationship
(e} = [q] (a} (2.7)

where the elements of [q] are listed in Table 2. 2.
The stress components are related to the strain components by the

elasticity matrix [D], that is
(3) = [D] (e} (2. 8)

where, for the isotropic case

*
The symbol { } denotes column matrices while [ ] denotes all other matrices.
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(1 - y)E yE vE o B @ T
Q+v)(1-2v) (Q+v)(1-2v) (1+v)(-2v)
(1 - yv)E vE 0 0 0

T+v-2v) Q+vl-2v)
s (l-vE__ o o o

0 T+ v - 2v)
Symmetric G 0 O
G O
L G -
E = modulus of elasticity
v = Poisson's ratio
—E___
G = shear modulus = 20+ v)
and
(0} = [or 09 O, Tro Trz 'rgz] (see Fig. 2.5)

The formulation of [D] for the case where the material is anisotropic
requires added consideration. Let 1, 2, 3 be the axes of anistropy (assumed
mutually perpendicular) and a, A a, the angles which define the orientation
of these axes. To understand more clearly the significance of the parameters
@), &y Aqs 8 step-by-step rotation of the axes 1,2, 3 to their actual positions
is illustrated in Fig. 2.4. Let axes 2,3 lie in the plane ABCD. In Fig. 2. 4a,
axis 3 and plane ABCD are initially positioned parallel to the Z-axis of the
3lement, @ being the angle which plane ABCD makes with the radial plane
passing through the central point of the element. In Fig. 2. 4b, plane ABCD
is rotated an angie a, about axis 2 to A'B'C'D'. Figure 2. 4c shows the actual
orientation of axes 1, 2, 3 arrived at by rotating axes 2, 3 an angle a, in their
own plane (A'B'C'D'). It should be noted that if material properties do not
vary in the plane of 2, 3, then a, can be arbitrarily set to any valua. say zero.

The stress-strain relations for general anisotropy are given in the

theory of eiasticity as



= £

°1 V12%  V13%
1 E, Ey
Y121 %2 V2%
E, B Ey
"13%  Y23% , 3
Ey Es B
—17
1, 12
—17
13 13
_17
23
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(2. 9)

where the subscripts refer to the directions of anisotropy defined in the pre-
ceding paragraph. Solving for the stresses and writing the resulting equations

in matrix form, one obtains

where
(c')
(e')
and
(D]

(0') = [D] (e)

lo) 0, 04 0y, 013 93)

le) €5 €5 7}, 713 723

(1 _ Y12 Y13
E, E, ~ E,
1 _ Yz
E, ~ E,
: L
Ey
Symmetric

(2. 10)
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Table 2.1 The Matrix [c]
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Table 2.2 The Matrix [q]
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FIGURE 2.4 Step-by-step Orientation of Axes of Anisotropy
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G,v

R, v

FIGURE 2.5 Positive Direction of Stresses and Displacements
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An equation connecting the stress vectors (o) and (o'} can be obtained
fcom consideration of equilibrium of the tetrahedron shown in Fig. 2. 6. Let,
for example, the stresses O, o and Toz act on the inclined plane ABC.
Furtherinore, let (t21' thy t23)' (tn. to tm). and (t31’ taoy t33) be the
direction cosines of these stresses relative to the axes 1,2,3. It canbe
shown that the components of stress acting on the plane ABC and parallel to

the coordinate axes 1, 2, 3 are

=
L}

1 = 9ttt T13t23
s = TigtartOo2t2?t Ty3t23

s = Matart stz t O3t23

(2. 11)

o R
¥ 1

The stress components 00' -r‘,0 and ng can then be calculated to be

0g = Ryty) +Rytyn *Rafay

To thn + thlz + Rst13 2. 12)

'rOz= R1t31 + RZt32 + R3t33

Similar expressions can be derived for ¢ ¢ oz and -r‘,z resulting in the general

relationship
() = [T] (') (2. 13)

in which [T] is a stress transformation matrix (Table 2. 3). It can be shown

that
(o] = (7 (D] [ (2. 14)

The table of direction cosines is given below:

Axes | L 2 3
R tyy |tz | his
0 tyy | t22 | ‘fes
z tyy | t2 | fas

where
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), - cosa, sm(cz1 - 989')

t,) = -cosa, cos(al - 989')

t31 = = sin a,

t,, = cosa, cos(a1 - GSQ') +sina, sin a, sin(a1 - GSG')

t22' = cosa, sm(a1 - GSG') - sin a, sin a, cos(at1 - 989') (2. 15)

t32 = sin a, cos a,

t)q = cosa, sin a, sin(al - 989') - sina, cos(a1 - GSG')

tyy = ~cosa, sin a, cos(oz1 - 989') - siaa, :zin(a1 - GSB')

ty; = COsagcosa

The stiffness matrix of an element is

® = 1075 4 T (oitqdav el (2. 16)
in which

dV = rr 0 z dr'de'dz’
s ss

The integral portion of eq. (2. 16) is evaluated by means of the Gaussian

quadrature formula.

2.3 Pormulation of Essential Matrices for MO-Qimensiongl Elements

The same relationships as in the preceding section, but with terms
involving z and w and components of stress and strain in the direction of
7-axis eliminated, are used as bases to derive the matrices for two-dimensional

elements. Th. displacement expression becomes simply

1 rere 000 O I;
- 3 (2. 17)
v 0 00 O 1 r 0 r'e .

The matrix [c] reduces to
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tita

tita

taita

9, 2142

‘22 tgs 291t

tgz t§3 2t3)1%2
Y2tz tiatas  tataittiatee
Y1242 fsts  ti2tatn's
Y22tz fstaz  t22tattarta

Table 2.3 The Transformation Matrix [T]

2t) 143

2ty)t,

2ty,t3,

tiata1t it

tiatttiitas

t,,+t,,t

31 2133

34

21,43

2t)5ta3

2t35t33

t1ataattiates

t13t32*ti2t3

taatynttaata;

—




FIGURE 2. 6

Stress Tetrahedron
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(b) Global coordinates

™GURE 2.7 Nodal Coordinates of Three-Dimensional Element
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l1 -1 -1 0 0 0
0 0 0 0 1 -1 -1
1 -1 1 =1 0 o0 0
0O 0 0 o0 1 -1 1
led =1, 1 0 0 0
0O 0 0 o0 1 1
1 1 -1 =1 0 o 0
0 0 0 o0 1 1 -1
and its inverse becomes
(1™ = $1a”
The formulas for components of strain are now
’
e I 5 ]
r or
- .l u, dv
(e) =4 €% r“Yr * e >
= Qu v v
| '8 ~r69 or r
from which the matrix [q] is obtained to be
o + o £ o
r r
s s
| xr 8 re
lal = r r r 0 0
1 r' l 1 r
0 . ré ré “ror “r
] s s s
The elasticity matrix for plane stress is
1 v 0
(D] - —& v 1 r
1=y
1y
AN

Similarly, for anisotropic case

(2. 18)
(2. 19)
(2. 20)
0
rl
o (2. 21)
s
8 _re
r r
§ o
(2. 22)
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1 v
- -z— 0
E, E
(017! - El_ 0 (2. 23)
2
sym. .
I 12

Wwith (o) equal to [orog'rre]. (¢') equal to (01027‘,“2) and a, defined

as in section 2. 2, the stress transformation matrix is calculated to be

1
sinza cosza 2 sinacosa
(1] = cosza sin2 -2 sinacosa (2. 24)
2 2
L—sinacosa sinacosa sin“a-cos”a]

in which a = al - OSO'.
In the element stiffness expression [eq. (2.22)],

dv = rtr_0_dr'de (2. 25)
s's

in which t is the thickness of the disc.

It should be noted that all the matrices, except [D], formed in this
section could also have been obtained directly from the three-dimensional
matrices of the preceding section by simply deleting appropriate rows and
columns of the latter and setting vaiues of certain parameters to zero. In
particular, to obtain [c], rows 3,6, 9 and 12 to 24 and columns 5 to & and 13
to 24 of Table 2. 1 ere deleted; to obtain [q) rows 3,5 and 6 and columns 5
to 8 and 13 to 24 of Table 2. 2 are deleted; to obtain [T] rows and columns
3, 5 and 6 of Table 2. 3 are deleted and a, and a, are set to zero. Thus, by
adding a few IF statements to and generalizing some indices of a three-dimen-
sional computer program, the program can be made to work for two-dimensional

cases as well.

2.4 Failure Criteria

The analysis described in this chapter will be basad on any one or

combination of the following failure criteria:
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1. Maximum principal stress theory--

Under this criterion, an element will be considered failed if one of
the principal stresses equals or exceeds the strength (elastic limit or yield
point) of the material making up the element. If tensile failure occurs, the
modulus of elasticity across the crack is reduced to zero and the stiffness of
the element is revised accordingly. The element can therefore no longer
resist tensile stress (no stress reversal is anticipated) normal to the crack
but can still take tensicn or compression in the other directions.

If failure occurs in compression (crushing), an approximation is made.
To account for the fact that rock exhibits ductility when subjected to high
confining pressure, only a portion of the stiffness of the failed element will
be removed. A more realistic approach would be to undertake inelastic
analysis to obtain the actual stiffness of the failed element. This approach,
however, presupposes the availability of a stress-strain curve which might
not be feasible in most rocks. Indeed, such curve can only be obtained
through a triaxial trest and its shape will vary widely depending on, among
other factors, the rock type, shape of specimen, and intensity of confining
pressure. Stress-strain curves of few rocks are available (1) but only at

certain confining pressure intensities.

2. Maximum shearing stress theory--
This criterion states that failure occurs when the maximum shearing
stress in a material equals or exceeds the critical shearing stress. The

Coulomb-Navier (1) version will be used. This states that shearing failure

will occur when
s

o (= + p:+1}*naq‘,.+y{.2+l:|32'r=_ (2. 26)

1
in which Ter is the critical shearing stress found to be between 2% and 15%
of uniaxial compressive strength; p is the coefficient of internal friction;
and u. and 0. are the major and minor principal stresses. The above expres-

1 3
sion takes into account frictional resistance to sliding along the failure plane.
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It should be noted that if p = 0, that is, there is no frictional resistance,
the above inequality reduces to

ol-osg_z-rcr (2. 27)

in which the left side is simply the expression for twice the maximum shear-
ing stress at a point.
Again, post-failure behavior of elements will be approximated.

3, Maximum principal strain theory--

This could be a better alternative to the first criterion in the sense
that here effects of the other principal stresses acting normal to the direction
being investigated are considered. To illustrate this point, consider Fig. 2. 8.
Let Og be the critical stress and €o the corresponding strain. In the first
figure. both the first and the present criteria will predict the same failure
stress, namely, o1 =0 e’ In the second figure, the first criterion will predict
the failure condition 01 = Oy but the present criterion will predict a value
creater than %% since: failure occurs when (o - V0o )> €o E. Similarly, a value
less than O will be predicted if Oy is in tension.

Failed elements will be treated the same way as in the first criterion.

°1 01
! !
g, — 0y
! 1
% %

_Figure 2.8
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2.5 Concluding Remarks

Derived in this chapter are the different matrices needed in the
development of the finite element program proposed in this report. Discussion
of such other integral parts of the program as (a) building up of the global
stiffness matrix, (b) determination of nodal displacements and stresses, and
(c) calculation of principal stresses is omitted because they are discussed
in detail elsewhere (2, 3, S, 6).

An equation solver proposed by Jensen and Parks (6) will be used in
the program. The solver contains an optimal nodal renumbering scheme to
conserve sparsengss of the stiffness matrix. Only nonzero terms of the

matrix are stored and processed.
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CHAPTER 3

TWO-DIMENSIONAL PROGRAM

3.1 Introduction

The program described herein was developed as an alternative to the
two-dimensional program submitted as part of the first annual progress report
(1). It contains the following features not found in the earlier program:

1. Element and node information are generated automatically thus
avoiding the preparation of voluminous deck of input cards.

2. Element sizes may vary, allowing for finer mesh in regicns where
stresses are large and coarser mesh elsewhere, for a more efficient solution.

3. More than one element may fail during each loading cycle.

No change is made in the failure criteria.

The element used in the present program is shown in Fig. 2.1 and
described in section 2. 3. The element belongs to the so-called "isopara-

metric" group.

3.2 Description of Program
The flow of the program is illustrated in Fig. 3. 2. The total program

is made up of the main program and four subroutines (complete listing is
shown in Appendix A). Each performs the following tasks:
Main Program
-- generates element ind node numbers in the sequence shown in
Fig. 3. 1;
-=- generates the nodal coordinates, given the radial coordinates of the
rings and the circumferential coordinates of the radial lines;
-=- forms the global stiffness matrix in blocks;
-- calculates the stresses and load factors (ratio of allowable stress

to principal stress) of each element;
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«-= Calculates critical loads, displacements and strains; and

== reinoves 90% of stiffness matrix of failed elements from glebal

stiffness matrix.

Subroutine DISPL
-= evaluates the unknown nodal displacements by the Ciussian

elimination method and back-substitution.

Subroutine MATB
== forms the matrix [q] and the matrix product [D]l[q].

Subroutine INTEG
-~ forms the stiffness matrix of the elements, employing Gaussian

quadrature formulas in place of actual analytical integration.

Subroutine UNIFRM
== generates elastic properties of elements of nonhomogeneous disc by

means of the random number routine RANUN (2).

RANUN generates arbitrary random ﬁumbers assuming statistically
uniform distribution. The first generative number of RANUN can be set to
any number N by a call to RANUNS(N). Both RANUN and RANUNS are Madison
Academic Computing Center (MACC) library routines.

It should be noted that in numbering the nodes, the center point of
the disc is multinumbered (see Fig. 3.1). This is done because each element

has to have four nodes,
The well-known banded matrix technique in solving simultaneous

linear equations ig employed in the program.

3.3 Test Problems

Several problems were run to test the correctness of the program. The

results of three are presented here.

A. Test Problem No. 1
A disc, 20 inches in diameter and 1 inch thick, is analyzed. It is

required to determine the stress aistribution along the line of the load.
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The disc is assumed homogeneous and isotropic.
Because of symmetry, only a quarter of the disc is considered in the

analysis. The quarter disc is divided into 25 rings and 18 equal slices for a
total of 408 elements and 450 nodes. The results are shown in Fig. 3. 3.

B. Test Problem No. 2 (Homogeneous Case)
A homogeneous disc, 3 inches in diameter, 1 inch thick, and possess-

ing the following elastic properties

Modulus of elasticity : 5.7 x 106 psi

Poisson's ratio 3 0. 25

Allowable compression: 27, 000 psi

Allowable tension : 5% of allowable compression

is analyzed. The discis divided into the mesh shown in Fig. 3.4. A listing
of therequired input data is printed on page 50. Some of the resuits of the

analysis are indicated in the following pages.

C. Test Problem No.3 (Nonhomogeneous Case)
A nonhomogeneous disc, 3 inches in diameter and 1 inch thick, is

analyzed. The elastic properties of the elements vary as follows:
6 6

Modulus of elasticity : 5.5x 10 to6.5x 10 psi
Poisson's ratio o 0. 23 to 0. 27
Allowable compression: 22, 000 to 32, 000 psi

(allowable tension = 5% of allowable compression)

Double symmetry is assumed to avoid having to analyze the entire disc
which would require considerably higher computer expense. The disc is
divided into the same mesh shown in Fig. 3. 4. Several runs were made. Dur-
ing each run, a different starting point for the random number generator was
specified. The necessary input is listed on page 51. Results of the anaiysis
are indicated in the following pages.



(b} Full Disc

FIGURE 3.1 Standard Scheme for Numbering Nodes and Elements
of Two-Dimensional Disc
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3.4 Discussion of Results

The results from Test Problem No. 1 clearly demonstrate the theoretical
correctness of the finite element solution formulated in this report. As can
be seen from Fig. 3.3, the elasticity and finite element solutions differ by
only 6% for Oy and 2% for oy at the center of the disc. By solving the same
problem several times progressively decreasing element size each time, the
finite element solution was also found to be conve:gent.

The discs analyzed in Test Problems No. 2 and No. 3 are models for
the Valders limestones studied extensively in the experimental phase of this
research (Chapter 1). The elastic properties assigned to the nonhomogeneous
disc are actual range of values obtained from experiment ,while those assigned
to the homogeneous disc are the mean of these values. The failure pattern
predicted by the finite element solution (Figs. 3.5 and 3. 6) agrees favorably
with the actual failure patterns of Brazilian tests. The critical load, however,
appears to be underestimated--5730 lbs. and 4400 lbs. for homogeneous and
nonhomogeneous cases compared to the 6940 lbs. average obtained from the
experiment. This seems to indicate that either the 90% factor used to deduct
the stiffness matrix of failed elements is too high or the failure mechanism
assumed in the program is not altogether realistic or both.

The load-displacement curves appear to follow the same general shape
regardless of material characteristics cr starting point of random number
generator (see Figs. 3.7 and 3. 8). These curves compare favorable with

those obtained from the experiment at the early stages of loading.

3.5 Conclusions

Based on the several computer runs made, the following conclusions
are drawn:

1. Even in its oversimplified form, the finite element solution is
capable of predicting the actual failure pattern of Brazilian tests.

2. With a few improvements in the failure criteria, there is a strong



possibility that the critical load and the load-displacement curve can be

accurately predicted as well.
3. In nonhomogeneous cases, the shape of the load-displacement

curve is not affected significantly by the choice of the starting point of the

random number genarator.
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Figure 3.5 Progression of Failure in Test Problem No. 2
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APPENDKX A

TWO-DIMENSIONAL PROGRAM LISTING

The computer program presented here is written in Fortran V language
specifically for the Univac 1108 computer at the University of Wisconsin -
Madison. The program is capable of handling all sorts of static two-dimen-
sional loadings, not just the diametric loading of the Brazilian test. Zero
or nonzero displacements may be assigned to any nude making possible solu-~
tions involving portions of the disc only.

The program requires usage of three auxiliary storage tapes or drums
designated by the numbers 10, 11 and 12.

The listing is complete except for the random number routines
RANUN(R) and RANUNS(N). These subprograms are provided by the Madison
Academic Computing Center (MACC).

A description of the input and output parameters required in the pro-

gram is given below.

Input Notations:

1. (a) NCHO - Printout code; O if only stresses at failed elements
are to be printed out; nonzero if stresses at all
elements are to be printed out.

(b) NWCL - Node at which radial displacement is to be computed.

(c) NSTI1, NST2 Nodes between which strain is to be computed.

2. (@) EMI],EM2 Range of values of e'astic moduli.

(b) Cs1,CS2 - Range of values of allowable compressive stresses.
(c) PR], PR2 - Range of values of Poisson's ratios.

(d) CTRAT - Ratio of allowabhle tension to allowabl‘e compressicn.
e T - Thickness of disc.

(f) TRN - Maximum percentage variation from largest load factor

for element to be considered failed; 0 if only one
element is allowed to fail each time.



(9)
3. (a)

(b)

(b)
(c)
(d)

(e)

0

(9)
(h)

(i)

S. N

DIA

IRN

NIK(1)

NELEM

NINN

NNSD

NNCL

NE

NS

NC

NER

NCOD

6. RADN(I)

7. TTAN(I)

60

Diameter of disc.

Total number of elements in vicinity of applied
loads.

Number of Ith element in vicinity of applied loads;
specified if run is to be terminated upon failure of
element; 0 if run is to continue.

Total number of elements.
Total number of nodes.
Total number of nodes with prescribed displacements.

Total number of nodes at which concentrated loads
are applied.

Total number of slices portion of disc involved in
analysis is divided into.

Total number of equal slices whole disc is divided
into; 0 if disc is not divided into equal slices and
only a portion of whole disc is involved in analysis;

any negative number if disc is not divided into

equal slices and whole disc is involved in analysis.

Total number of rings plus one disc is divided into.

Least total number of similar consecutively numbered
elements; 1 in nonhomogeneous and anisotropic
problems. This parameter allows the generation of
stiffness matrix of similar elements only once.

Total number of load cycies.

First generative number of random number routine.
(Note that this information is supplied only in
nonhomogeneous problems. )

Radial coordinates of rings starting with 0.

Circumferential coordinates in degrees of radial lines
dividing disc into slices. (Note that this informa-
tion is supplied only when disc is divided into
unequal slices. )
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8. @) MR 1 for 1st card; 2 for 2nd card; 3 for 3rd cari, etc.

Number of MRth node with externally applied con-
centrated load.

(b) NODC(MR)

Magnitude of concentrated load. (I = 1 in radial
direction; I = 2 in circumferential direction. )

(c) CLOAD(MR, I)

9. (a) NODB(IX) = Number of IXth node with prescribed displacement.

(b) DISP(X,I) - Value of prescribed displacement; 200. if displace-
ment is not prescribed. (I = 1 in radial direction;
I= 2 in circumferentia) direction. )

) n - Total number of nodes which exactly have the same
prescribed displacements as NODB and which form
an arithmetic progression with NCDB; 0 if none

such nodes.

d 1 - Interval of arithmetic progression.
Qutput Notations;
RADIAL - Direct stress in radial direction.
CIRCUM - Direct stress in circumferential direction.
SHEAR - Shearing stress.
PRNCPI1, PRNCP2 - Principal stresses.
MAXSHR - Maximum shearing stress.
LD FAC - Load factor (ratio of allowable stress to actual stress).

All other output notations are self-explanafory.
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